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ABSTRACT

Hamilton-Jacobi (H-J) equations are frequently encountered in applications, e.g. in con-

trol theory and differential games. H-J equations are closely related to hyperbolic conserva-

tion laws - in one space dimension the former is simply the integrated version of the latter.

Similarity also exists for the multi-dimensional case, and this is helpful in the design of dif-

ference approximations. -I_ th/_ paper we investigate high order essentially non-oscillatory

(ENO) schemes for H-J equations!.which yield uniform high order accuracy in smooth re-

gions and resolve discontinuities in the derivatives sharply. The ENO scheme construction

procedure is adapted from that for hyperbolic conservation laws. We numerically test the

schemes on a variety of one-dimensional and two-dimensional problems, including a problem

related to control-optimization_-and observe_high order accuracy in smooth regions, good

resolutioa of discontinuities in the derivatives, and convergence to viscosity solutions__
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1. INTRODUCTION

The Hamilton-Jacobi (H-J) equation

¢,+ n(¢,,,... ,¢,,) = 0
¢(x,0) = ¢0(x)

(1.1)

appears often in applications, e.g., in control theory and differential games. The solutions

to (1.1) typically are continuous but with discontinuous derivatives, even if the initial

condition ¢0(x) is C _. The non-uniqueness of such solutions to (1.1) also necessitates the

introduction of the notions of entropy condition and viscosity solutions, to single out a

unique practically relevant solution. See, e.g. Crandall and Lions [1] for details.

An important class of numerical methods for solving (1.1) is the class of monotone

schemes discussed by Crandall and Lions [2]. Monotone schemes are proven convergent to

the viscosity solutions. Unfortunately monotone schemes are at most first order accurate.

Traditional high order methods are unsuitable, because spurious oscillations will generally

occur in the presence of discontinuous derivatives.

There is a close relation between (1.1) and a hyperbolic conservation law

,,, + Z:,_=_/,(,,),,= ou(x,o)= ,,o(_).
(1.2)

In fact, for the one dimensional case d = 1, (1.1) is equivalent to (1.2) if we take u = Cz.

For multi-dimensions this direct correspondence disappears, but in some sense we can still

think about (1.1) as (1.2) "integrated once". Hence successful numerical methodology for

solving hyperbolic conservation laws (1.2) should also be applicable to the H-J equation

(1.1).



Essentially non-oscillating (ENO) schemeshave been very successfulin solving the

hyperbolic conservation law (1.2), Harten and Osher [3], Harten, Engquist, Osher and

Chakravarthy [4], Shuand Osher [7], [8]. The key idea is an adaptive stencil interpolation

which automatically obtains information from the locally smoothestregion, henceyields a

uniformly high order essentially non-oscillatory approximation for piecewisesmooth func-

tions. We summarizethis ENO interpolation procedure asfollows:

Given point values f(xj),j = 0,:t:1,=t=2,... of a (usually piecewise smooth) functions

p.f,r
at discrete nodes xj, we associate a r-th degree polynomial .,i+H2(x) with each interval

Ix i, x j+l], constructed inductively as follows:

(1) P/j,.ll/2(x ) - f[xj] + f[xi,xj+,](x - xi), kmln - j

(1.3)

(t--l) r_f,t--1 /
(2) If kmi n and rj+l/2[x J are both defined, then let

b(O = f[xk(_a)_l,...,:rk_,)+t_l]

and

(i) if

(ii)

lace) I _ lgt) I, then c (e) - b(0, k_tl)n = k_i-_ 1)- 1

otherwise c(t) = a(t), k(t). = kmin(/-1)
"'nlllll

ol,t ¢ _ pl,t-I ix _ + c(t)- i+1/2, x, = "s+_12, , II (X -- Xi)

[]
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In the above procedure f[.,... ,'] are the usual Newton divided differences. Notice that

we can also start from one node xj to build a polynomial Pf'r(x) using the same procedure.

In [6] Osher and Sethian constructed ENO type schemes and applied them to a class of H-

J equations and perturbations, arising in front propagation problems. They achieved very

good numerical results. In this paper we provide a more general ENO scheme construction

procedure, mainly by considering different multidimensional monotone building blocks.

We then numerically test the schemes on a variety of one and two dimensional problems

including a problem related to control-optimization, check the accuracy in smooth regions,

the resolution of discontinuities in derivatives, and the phenomenon of convergence to

viscosity solutions. Concluding remarks are given in Section 4.

2. SCHEME CONSTRUCTION

For simplicity of exposition we take d = 2 in (1.1), and use x, y instead of xl, x2:

¢, + n(¢., ¢y) = 0¢(x, y,0) = ¢0(x,y)
(2.1)

For mesh sizes Ax, Ay, At, ¢_ will denote a numerical approximation to the viscosity

solution ¢(z,, yj, t n) = ¢(iAx, jAy, nat) of (2.1). We also use standard notation such as

At At

L.XX _y

We start with a first order monotone scheme [2]:

n _ n Y nx
A+¢i/

¢_+1= ¢.- zxtP \"..a_ ' a_ ' _V ' Ay



where H is a Lipschltz continuous monotone flux consistent with H:

=

Monotonicity here means that H is non-increasing in its first and third arguments and

non-decreasing in the other two. Symbolically H(&, 7, &, 1").

We now give some examples of monotone fluxes H:

(1) Lax-Friedrichs [2]:

- ) 1 +

tt+ + t/ V++v-

.f-ILF(u+,u-,v+,v-)-- H -- otZ(u+--u-)--_o_'(v --v-) (2.3)2 ' 2 z

where

= -- max Ill1 (u, v)[, _v = max [H2(u, v)[ (2.4)
A<u<B A<u<B
C<v<D C<v<D

Here Hi(u, v) is the partial derivative of H with respect to the ith argument.

.f-I LF is monotone for A _< u =1:< B, C < v + _< D;

The flux

(2) Godunov type [5]:

/arG(u+, u-, v + , v- ) = ext ext H(u, v)
uEl(u-,u+) vEI(v-,v+)

(2.5)

where

I(a, b) -- [m.in(a, b), max(a,b)]

and the function ext is defined by

min if a <_ b
ext = a<_u<_b

,,ex(a,_) max if a > b
b<_<a

(2.7)

E
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As pointed out in [5], since in general minu max_ H(u, v) # max_ minu H(u, v), we will

generally obtain different versions of Godunov type fluxes/ira, by changing the order of

rain and max. Uniqueness of _a happens when, e.g., H(u, v) = Hi(u) + H2(v), and in

many other cases. Then, by [5], -t_Ia(u, v) is the exact solution to the Riemann problem

of (2.1), i.e., this is the viscosity solution of (2.1) for

¢0(x,y) - xu0(x)+ vv0(y),
f U+, 2 > 0

u0(x) =
( u-,x < O,

f v+, y >_0
vo(y) [ v-,y<O

(2.s)

evaluated at (x,y)= (0,0), and t > 0.

For this reason all monotone fluxes can be regarded as approximate Riemann solvers in

this sense.

(a) Local Lax-Friedrichs (LLF) [S]:

,_ , ,_-) l_yr_+ v-)(_+_v-)

(2.9)

where

a'(u +,u-)- max IHl(u,v)], a*(v +,v-)- max IH2(u,v)] (2.10)
uEI(u- ,u +) yES(v- ,v +)
C<_v<_D A_u<B

In the appendix we prove that ff._LLF is monotone for A < u ± < B, C < v ± < D; Notice

that ff'I LLF has smaller dissipation than 9 LF.

(4) Roe with LLF entopy correction [8]:
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H(u*,v*); ifHa(u,v) and H2(u,v) do not change signs

in ue 1(u-,u+), v_ I(v-,v+);

.H¢_, 2 ,v*)- ½aX(u+,u-)(u + -u-); otherwise and ifH2(u,v)

finF(u+, u-, v +, v-) = does not change sign in A <_ u <_ B, v E I(v-, v +)

H(u*, "++2_- ) - ½o_U(v+,v-)(v + - v-); otherwise and if Hl(u,v)

does not change sign in u E I(u-,u+), C < v < D,

fiLLe(u+,u-,v +,v-); otherwise

(2.11)

where u*, v* are defined by upwinding:

u if H_(u,v) < O f v + if H2(u,v) <_ Ou*= ; v*= _ (2.12)u- if H_(u,v) > 0 v- if H2(u,v ) > 0

We will prove in the appendix that fi nE is monotone for A _< u + < B, C _< v a < D.

Notice that /:/nr' is simple to code, purely upwinding, with almost as small dissipation

_._ 112as fla. Also notice that fine is not continuous: for example if H(u) "K (one space

(1-,)2
dimension) then finE(I,0) = 0but HRF(1,--c) = _2 -- _'1.1.(l+e) t-'°+_ --_#0.3

: _ : :Z

However, this type of discontinuity does not hurt, because we have

IfiRF(u+,u--,V+,V-) - fiO(u+,u-,v+,v-)l < M(I u+ - u-I + Iv+ - v-I); (2.13)

hence we still get consistency and accuracy.

REMARK 2.1. A flux with even smaller dissipation than I-'I LLF is

fiILLLF (ttq-, U--, T3"t', V--) = g( u++u -2 _)-½_ (ut ,v_)(u+-u-)-½_"(u _,vi)(v+-, - )

(2._:)



where

max IH_(_,_)I. (2.1_)_(_*,_*)= max IH_(_,_)I, _(_,_)= __+_
uEI(u- ,u +)
vEt(v- ,v +) vEl(v- ,v +)

Unfortunately it is not monotone: for example, ifH(u, v) = e "+_, then flLLLF(2, O, O, 20) >

flLLLF(o, o, o,20). For separable Hamiltonians with H(u, v) = Hi(u) + H_(v) we have

__]LLLF =fILLF.

We now begin the description of our high order ENO schemes. Monotone fluxes play

the role of "building blocks". The ENO interpolation idea in (1.3) is used to obtain high

order non-oscillatory approximations to u :1: = ¢# and v :1: = Cv:t:. These values are then

put into a monotone flux H(u +, u-, v +, v-). Time accuracy is obtained by a class of TVD

Runge-Kutta type time discretizations [7]. We summarize the algorithm as follows:

ALGORITHM 2.1 :

(1) At any node (i,j), fax j to compute along the x-direction, by using (1.3), obtaining

+ Then letSimilarly for vii.

tt/_ = d D¢,r l'_._ (2.16)

= uiy, vo, v_j) (2.17)

(2) obtain ¢.+1 from Cn by the following Runge-Kutta type procedure:

k-1

Eto,, l; +mj
t=O

k=l,...,r (2.18a)



(2.18b)

[]

We can take r = r and positive ¢rkt and _kt for up to third order r _< 3.

(2.18) can be proven TVD under the CFL condition:

At

<

The method

(2.19)

if the Euler forward version of (2.17) is TVD under the CFL condition

(2.20)

We summarize some of the schemes (2.18) in Table 2.1:

Table 2.1 TVD Runge-Kutta method (2.19)

Order

2

_kt ]_kt

1

1 1

1_
4

1

1_. 1..
2 2

1 2 2
9 3

1 1
0 3 3

0 2_.
3

1

4

1

1
0 _-

1.
2

3

1

6

0
3

Cr

1

2



Algorithm 2.1 is formally uniformly r-th order in space and time in smooth regions

(measured by local truncation errors).

Notice that in the algorithm above, we need to evaluate two polynomials P_,J to get

u +. If the monotone flux is purely upwind and there is no "sonic point" (points at which

H1 or H2 changes sign), one of u + and u- is never used. We thus recommend the following:

ALGORITHM 2.2:

(1) Compute fi_ -- _ and _ -- _ If I-Ii(u, v) and H2(u, v) do not change signs_z _y "

, * V*in u e I(fi_, fi_), v e I(_ b_), then compute only u,j and v_j by (2.16) where u*, are

defined by (2.12); and take Lij - -AtH(u*, v*); otherwise take (2.17).

(2) Same as step (2) in Algorithm 2.1. []

Notice that Algorithm 2.2 is NOT equivalent to Algorithm 2.1 with/_ = HRF. Since

we expect sonic points to be isolated, Algorithm 2.2 is usually almost twice as fast as

Algorithm 2.1.

REMARK 2.2. Notice that, in smooth regions, by Taylor expansion,

If we choose, instead of (2.16),

d ¢,r

where the projection P is defined by

y, if
P[a,bl(Y) = a- b,

a+ b,

a-b<_y<a+b

if y<a-b

if y>a+b

(2.21)

(2.22)

(2.23)



we will still haveuniform high order accuracy u_ -- (¢x)ii + O(Axr) in any region where

[¢x_[ -< 2M. Algorithm 2.1 will then give a scheme which deviates from a monotone

scheme by MAtAx, hence we trivially obtain convergence to the viscosity solution through

the theory for monotone schemes. In practice we do not recommend (2.22), because the

parameter M is not intrinsic - it has to be adjusted for each individual problem. See [7,

p. 452] for a discussion of a similar situation for conservation laws.

REMARK 2.3. When implementing (1.3) we use undivided differences:

_(j,O)--_j (2.24a)

_(j,k)--_(j+i,k-1)-_(j,k-i), k=l,...,r+l (2.24b)

The computation of (2.24) can be easily vectorized. The ENO stencil-choosing process is,

for computing u + = (_)+, starting with i(j) - j and performing

if (abs(cp(i(j),k)). gt. abs(_(i(j)-l,k))) i(j) = i(j)- 1 (2.25)

for k = 2, ... , r, where i(j) is the left-most point in the stencil for .rj+}tx).'_'r,, This can also

be vectorized. Finally

u+= = 1A-"'_E c(i(j)- j,k)_(i(j),k)
k=l

(2.26)

where

1 rn+k--1 m+k--I

c(m,k)= k-7 II (-e).
$ m g------rn

- t¢,

(2.27)

Notice that the small matrix c is independent of _, is only computed once and then stored.

(2.26) can be vectorized easily as well.

3. NUMERICAL RESULTS
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EXAMPLE1. One dimension. We solve

{ ¢,+H(¢_)=0¢(x, 0) = - cos _'z
-l<x<l (3.1)

with a convex H (Burgers' equation):

(.+_)2 (3.2)H(u) = 2

and a non-convex H:

H(u) = - cos(u + oO. (3.3)

Notice that if we let v = ¢x + a, f(v) = H(v - a), then (3.1) becomes a conservation law

v, + f(v), = 0
v(x, O) = a + = sin =x

- 1 < z < 1 (3.4)

which is a standard test problem for conservation laws (e.g. [7]). We can easily use the

method of characteristics to obtain the exact solution of (3.1) through that of (3.4).

0.5 (when the solution is still smooth)We take o_ = 1 and compute the result to t = tl =

1.s (when the solution has a discontinuous derivative). We print out theand tot =t2 = _-r

L1 and Loo errors, in Table 3.1, for selected first order monotone schemes and third order

ENO schemes in smooth regions, i.e. the whole region [-1,1] for t = tl and the region

Ix - x, I > 0.1 for t = t2 where x, is the location of any discontinuity of the derivative. We

also present the graphs of the numerical solutions (in diamonds) versus the exact solutions

(in solid fines) in Figures 1 and 2.

11



Table 3.1 L1 a_l L. Errors I. Smooth Regions fOr (3.1)

- o.5/_ , - _._/_

12



REMARK 3.1. From Table 3.1 and Figures 1 and 2 we can observe that:

(i) the resolution of third order ENO schemes with 10 points is roughly the same as that

of the corresponding monotone schemes with 80 points;

(ii) ENO-3-Godunov and ENO-3-RF have roughly the same resolution, even if the latter

is much simpler than the former and only takes about half time. []

EXAMPLE 2. Two dimensions. We solve

¢(_, y,0) = -co_

with a convex H (Burgers' equation):

- 2 < z,y < 2 (3.5)

H(_, v) = (" + v + _)22 (3.6)

and a non-convex H:

H(u, v) = - cos(u + v + a). (3.7)

Notice that, under the transformation ( = z2+-_, rI = _-_, (3.5) - (3.6)- (3.7) become (3.1)

- (3.2) - (3.3) in the _ direction. We can thus use the one dimensional exact solution to

analyze our numerical results. Since we use (z, y) coordinates, this is a true two dimensional

test problem.

We again take a = 1 and compute to t = tl = _ and t = t2 1.5= _-T. Some results are

presented in Table 3.2 and Figure 3.

13



Time

Table 3.2 Lz and Loo Errors in Smooth Regions for (3.5)

. 0.5/_2

I0_ 2O2

x.o_-z) _.zo<.._)

i._-I)

2.70(._.)

z.oS(-z)

5.68(-_)

_0_ 8O_

6.o3(-,9.)

gtp9(-_)

e.75(_)

•_,s(-s)

Q._,._)

6.9s(-_)

9._3(-6)

zo_ _o_ _o_ So_

a._(-z) z._(-z) _._(-a) 3._-_

_.xT(-I)

s.o_-_)

z.o3(-z)

x.7_(-x)

_,.pe(-3)

7.e_-3)

3._(-_)

z.@(-3)

z.30(-_)

•9_(-5

_.Z_(-_)

_._(-_)

e.93(-p) z.o3(-_)

_.3J(-3)_._(-._) z.o7(-_) z._(-_,) 9.zo(-3)

_MARX 3.2 .......

(i) By comparing Table 3.2 with Table 3.1 we can see that ENO schemes perform

equMly well-i-ntwo dimensions_

(ii)N0t|ce that_except for a sharper _scontinu_ty-in-clerivativeresolution,we cannot

see much di_erence between Figures 3(a), 3(c) (firstorder monotone schemes) and

a large difference in the resolution of the solution in smooth re_ions. This Jn_cates

the ]_raJtations of graphical presentations;

14



(iii) In this two dimensional case, the Godunov flux is considerably more complicated

to program than L,F or RF, with a not-so-significant improvement in resolution for

ENO-3. []

EXAMPLE 3. We solve a two dimensional non-convex Riemann problem

¢t + sin(¢x + Cv) = 0 (3.8)
¢(x,v,0) = Ixl)

to investigate the resolutions of different building blocks, the behavior of different versions

of Godunov flux (2.5); and convergence to viscosity solutions. The results are in Figure 4

and 5: From the graphs and computer outputs we can observe:

(i) ENO-3 with G1, G2 (two versions of Godunov fluxes), LF and RF as building

blocks are all convergent to the viscosity solution, with a much sharper resolution

for the discontinuities-in-derivative than the corresponding first order monotone

schemes;

(ii) ENO-3-RF has roughly the same resolution as ENO-3-Godunov, with a much sim-

pler program and a reduced computer cost;

(iii) The difference between two versions of Godunov fluxes is very small: the average

difference at t = 1 is around 1000 times smaller than the L1 errors.

(iv) ENO-3, using the Roe flux as a building block without entropy corrections, i.e.,

Algorithm 2.2 without using (2.17) for entropy corrections in "sonic cells", converges

to an incorrect solution just as the first order Roe scheme (Figure 5). This indicates

the importance of entropy corrections in "sonic cells".

EXAMPLE 4. We solve the following problem related to control-optimal cost determi-

nation:

1sin 2 (1 cosx)=0
¢, -- (siny)¢_ + (sinx + sign(¢v))¢ v -- _- Y- - (3.9)

= 0

15



assuming periodicity. The results at t = 1 are presented in Figure 6. Notice that third

order ENO schemes have sharper discontinuities-in-derivative resolution than first order

monotone schemes. For this problem the interesting quantity is the optimal solution w =

sign(¢_), Figure 5d. A sharper discontinuities-in-derivative resolution means smaller error

for w in the neighborhood of each such point.

4. CONCLUDING REMARKS

We have generalized ENO schemes for conservation laws to Hamilton-Jacobi type equa-
=

tions. Computational results indicate good accuracy in regions of smoothness, sharp dis-

continuities in derivatives, and convergence to the correct viscosity solutions. Algorithm

2.2 (ENO-RF) is usually preferred, due to its simplicity to program, reduced computa-

tional cost, and its excellent resolution, which is comparable to the results using the much

more complicated Godunov type building blocks.
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APPENDIX

We prove that _"I LLF and/:/aF are both monotone. To simplify the exposition we only

consider the one dimensional case. The proof for the multi dimensional case is similar.

LEMMA A.1 ft LLF i._ monotone.

Proof. ,_"1LLF in one dimension is defined by

flLLF(u+'u--)_- HiU+ + U-- )2

1
max

2 ueI(u-,u+)
IH'(u)I(u+-u-). (A.1)

We assume u+ > u+ and want to prove fILLF(u+,u-) <__ILLF(u+,U--).

flLLF(ut, U-) -- I-'ILLF(_@2, U-). This equals:

Let D =

2 2 -2 IH'(u)J(u+-u-)+,_ IH'(_)I(_+-_-)max

u el(u- ,ul+ ) _,el(,,- ,.+)

CASE(i) u + >u + >u- We have foru- < _<_< _<u+;

1 F
IH'(_)(_+ - _+)-D=_
I-

1
JH'(0(_ + - _+)-<5
t-

1 + [H'(_)= 5(_ - _+)

max IH'(_)I(_+ - u-) ÷

max iH'(u)l(u + - u-) +
_-<.<_,+

max IH'(_)I] < 0;

IH'(u)l(u+-u')]

IH'(u)l(u+-u-)]

L

v

CASE (ii) u- > u + > u +, similar to case (i);

18



CASE (iii) u + > u- > u +. Wehave, for u- < _ < _ < u + andu + < _++__222_< r/< u-,
.... 2 -- -- 2 --

1 r

[_'(_)(_+ - _-) + H'(_)(.- - _+)-

+ max I_'(_)1(_+ - _-)]
.+<._<.- J

- _(_1 - _-) H'(_)- max IH'(_)I

max IH'(_)I(_+ - _-)
_-<_<,,+

1 [+ g(_ - _+) H'(_)- ma_
,,+<,<_-

Hence we proved/_(1, "). We can similarly prove/2/(., ],) []

LEMMA A.2 fI nF is monotone.

Proof. f-I RF in one dimension is defined by

H(u ) if H'(u)<_O in
fiRE(u+, u-)= H(u-) if H'(u) >_ 0 in

fILLF(u +,u-) otherwise.

u e I(u-, u+)

u C I(u-, u +) (A.2)

We assume u_- > u_" and want to prove ftRF(u+,u'_) > /_RF(U+, u_').

Let D = HRF(u+,u-Z)-- HRr(u+,u;).

CASt(i) r:/RF(_+,_7) = -0G(_+,_;-) _ndHRF(_+,_7) = .0a(_+, _i-) or .0RF(_+,_-) =

[-ILLF(u+, UT) and/:/RF(u+, u_-) = .f-ILLF(u+, uT) , then automatically D > 0.

CASE (ii) f'IRF(It+,Ul)= H(ttl) , ,_zRF(tt+,tt;)--- .[-'ILLF(tt+_tt2). Then H'(u) > 0 in

I(u'[, u +) but H'(u) changes sign in I(u'_, u+ ), hence I(u-_, u + ) ¢. I(uT, u+ ). Therefore

u + > u_'. We then have either

19



(a) u + > u_" > u2, and, for u_- < _ < u + we have

D=l[H'(()(2u-[-u_-u+)+ max IH'(u)l(u+-u_)]
n_<u<u+

_ ma.x= (u+-u?) max IH'(u)l H'(_) +xCuT-u;)
,,_ <_<,,+ U_ <u<u+

IHi(_)l+ H'(e)] >_0

or (b) u_- > u + >__u_', and, since H(u'[) > H(u +) due to the fact that H'(u) > 0 in

[u +, u7] , we have, for u + > _ > _ >u2,

D = H(u-[)- .['ILLF(u-t-,u2) >___H(u "b) - .['ILLF(lt+,U2)

]= - - max [H'(u)l(u +- u;)
2 H'(_)(u+ ,,_) + ,,;<-,,<-,,+,

=l(u+-u_')( max IH'(u)I+H'(_))>_O;
u_ <u<u+

CASE (iii) [-lnF(u+, u'Z) = H(u+ ), fiIRF(u+, u'_) = f-ILLF(u+, u_)

As in case (ii) we can again deduce u + > u_-; hence, for u 2 < u++u; < _ < u +, we have

D = H(u+) - f'ILLF(u+,u'_)

= _1[n'(_)(u+ - uT) - ";max-<_-<'+IH'(u)l(u+-u_)]>O;_

CASE (iv) .[-IRF (u+, uT ) = .[-ILLP(u+, u'[ ), .[-IaF (u+, u'_ ) = H (uT ) similar to case (ii);

CASE (v) filRF (u+, u -) = .[-ILLF (u+, u'_ ), .f'IRF (u+, u'f ) = H (u +) similar to case (iii).

We have proved H(., 1). Similarly for H(I,') []
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Figure 1 : One dimensional Burgers' equation
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3a : First order Lax-Friedrichs, convex H 3b : ENO-3-LF, convex H

f

3c : First order Lax-Friedrichs, non-convex H 3d : ENO-3-LF, non-convex H

Figure 3: Two dimensions, 40 x 40 points

23



4a : First order Lax-Friedrichs 4b : ENO-3-LF

4c : First order, Godunov, version I 4d : ENO-3-G1

4e : First order Godunov, version II

Q

4f : ENO-3-G2

4g : First order Roe with entropy correction

: ENO-3-RF

Figure 4: Riemann problem (3.8), 40 x 40 points, t -- 1.
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5a : First order Roe 5b : ENO-3-Roe

Figure 5: Riemannproblem (3.8), 80 x 80points, t = 1

6a : First order Lax-Friedrichs
6b : ENO-3-LF

6c : ENO-3-RF 6d : -w -" sign(¢_), ENO-3-LF

Figure 6: Control problem (3.9), 40 x 40 points
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